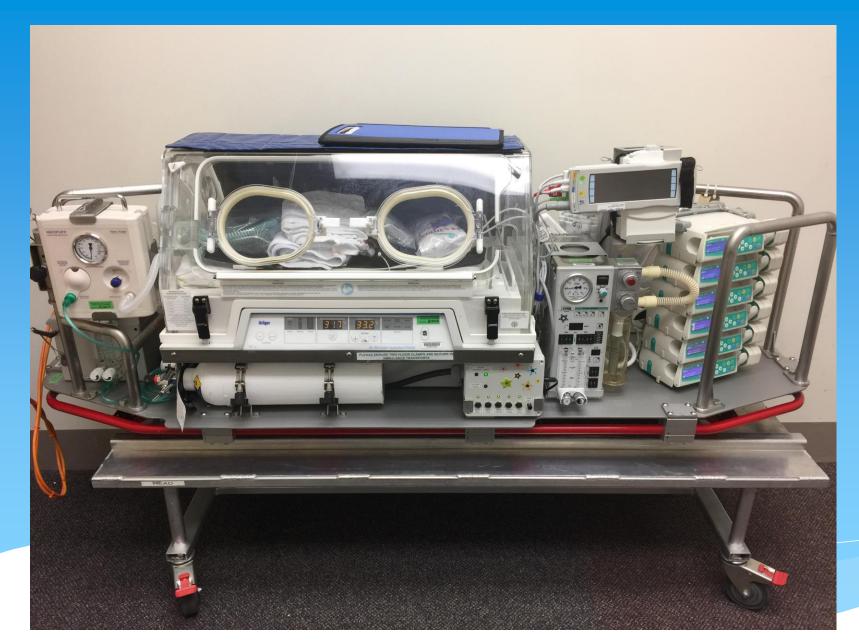
HUMIDIFIED HIGH FLOW ON TRANSPORT

Tracey Wright Senior Flight Transport Nurse Neonatal Intensive Care Unit Starship Children's Health

OBSERVATIONAL STUDY

- Stable term and preterm infants
- Repatriation road and flight transports
- Data collection 20 month period

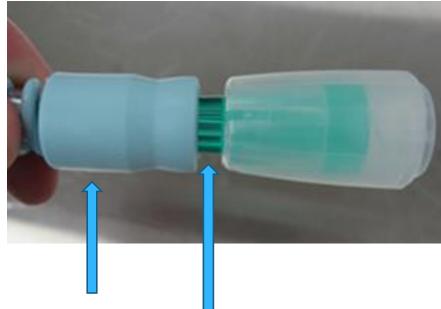


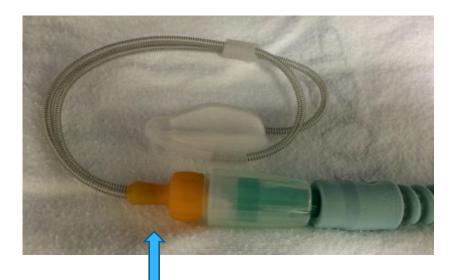
BACKGROUND HUMIDIFIED HIGH FLOW

- Established practice in neonatal intensive care units [NICU]
- Post extubation treatment
- Inadequate data for its use in extremely preterm infants with respiratory distress syndrome [RDS]
- Paucity of data for humidified high-flow [HHF] on transport

(Boyle et al., 2016; Roberts et al., 2016; Wilkinson, Anderson, O'Donnell, De Paoli & Manley, 2016)

Transport Rig, NICU, Starship





Stephan F120 mobile transport ventilator, NICU, Starship

VENTILATOR TUBING ADAPTIONS

Inspiratory arm

Fisher & Paykel Optiflow circuit

Optiflow adapter tubing

HUMIDIFICATION

Device	Flow (L/min)	Oropharyngeal Temp (⁰ C)	Oropharyngeal RH(%)
Continuous positive airway pressure [CPAP]	8L	33.5	90.6
High-flow nasal cannula	7L	33.5	85.0
High-flow nasal cannula	4L	33.1	80.9

(Roberts, 2015)

Starship Child Health

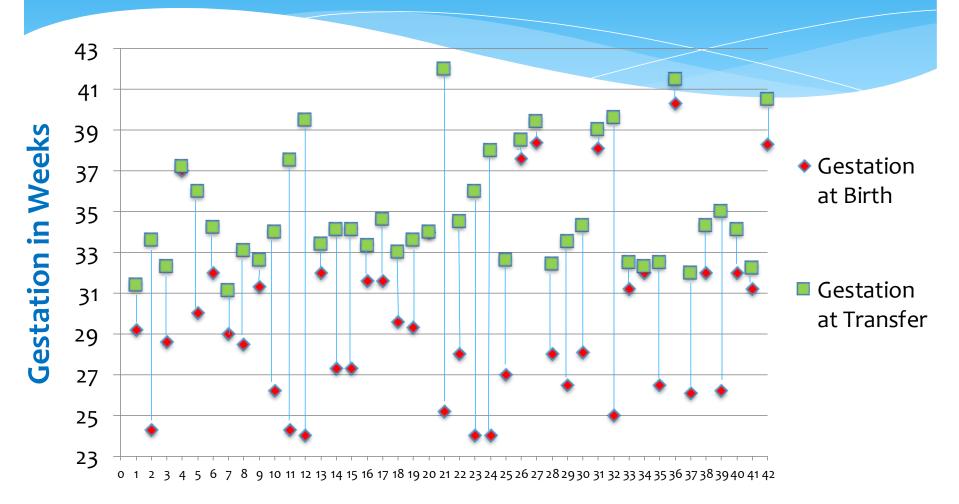
 Investigate stability of stable preterm infants who meet eligibility criteria for transport on HHF, during and up to 48 hours post transfer.

(M Buksh, S Wilson, personal communication, February 17, 2016)

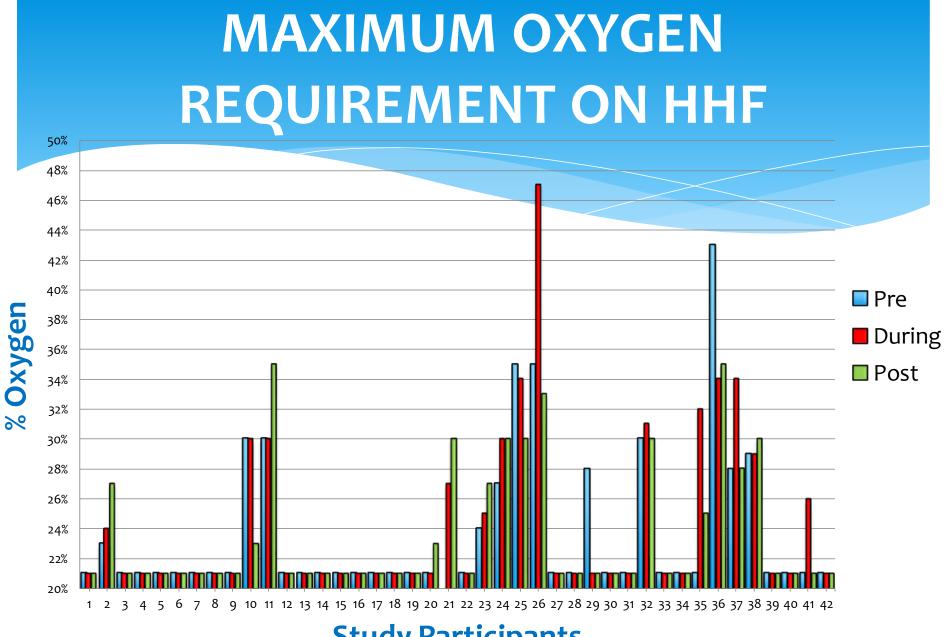
ELIGIBILITY CRITERIA

- ~ 32 weeks Corrected Gestational age [CGA]
- Stable on Humidified High Flow for at least 48 hours prior
- FiO₂<30%
- Both Medical and Nursing Teams in agreement
- Receiving 6L or less of HHF
- Consider transfer on CPAP if
 - > 6L/min HHF
 - clinically fragile

(ADHB Newborn Guidelines, 2016; Roberts et al., 2016)



DEMOGRAPHIC CHARACTERISTICS OF BABIES n=42


Gestation at birth - median (range)	29 (24 - 403)	
Birth weight	1208gms (500-4520gms)	
Gestation at transfer	34wks (31.1 - 42 weeks)	
Weight at transfer	2008gms (1100 – 4600gms)	

GESTATION OF INFANTS TRANSFERRED

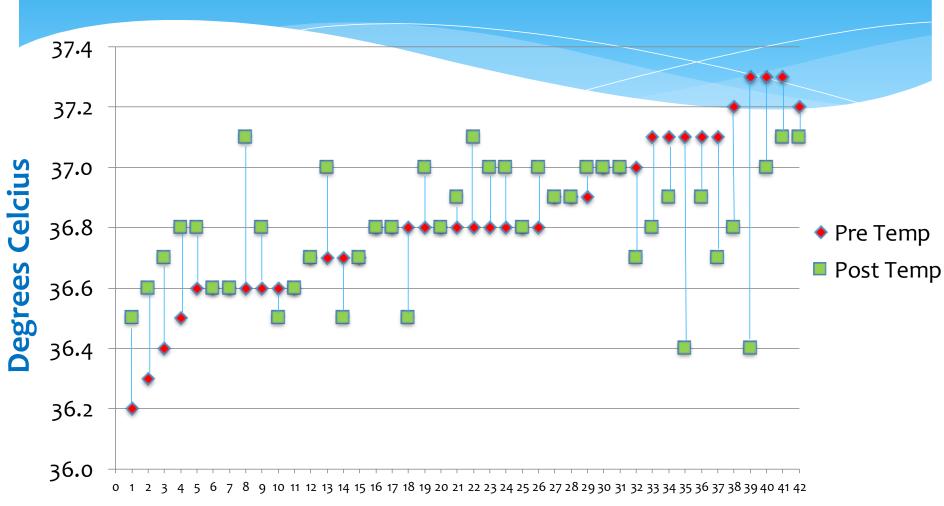
Study Participants

Study Participants

MAXIMUM OXYGEN REQUIREMENTS DURING AND AT 48 HOURS POST TRANSPORT

	FiO ₂ During Transport	FiO ₂ 48 hrs Post Transfer
Increased	21% (n = 9)	19% (n = 8)
Decreased	2% (n = 1)	9.5% (n = 4)
Unchanged	76% (n = 32)	71% (n = 30)

 34 babies (81%) were either unchanged or had a reduced oxygen requirement at 48hrs


48 HOURS POST TRANSPORT

	Maximum Flow During Transport	Maximum Flow 48 Hours Post Transport
Increased	9.5% (n = 4)	16% (n = 7)
Decreased	2% (n = 1)	28% (n = 12)
Unchanged	90% (n = 38)	45% (n = 19)
Low Flow	0	2% (n = 1)
Off	0	7% (n = 3)

 35 babies (83%) at 48 hours post transfer were either unchanged, had their flow reduced or were off High Flow

TEMPERATURE

Study Participants

* Humidified high flow nasal cannula oxygen / air is a safe and effective method of respiratory support during neonatal transport in this group of stable term and preterm infants.

ACKNOWLEDGMENT

Claire Vinnicombe Senior Flight Nurse Neonatal Intensive Care Unit Starship Children's Health

Shirley Wilson Clinical Charge Nurse Neonatal Intensive Care Unit Starship Children's Health

Auckland District Health Board [ADHB] (2016). Newborn Guideline: Neonatal Transport on Humidified High Flow (HHF) via Nasal Cannulae. Retrieved August 06, 2017, from http://www.adhb.govt.nz/newborn/Guidelines/Admission/TransportonHHF.htm

Boyle, M., Chaudhary, R., Kent, S., O'hare, S., Broster, S., & Dassios, T. (2014). High-flow nasal cannula on transport: moving with the times. *Acta Paediatrica*, 103(5), 181. doi:10.1111/apa.12594

Boyle, M. A., Dhar, A., Chaudhary, R., Kent, S., O'hare, S. S., Dassios, T., & Broster, S. (2017). Introducing high-flow nasal cannula to the neonatal transport environment. *Acta Paediatrica*, 106(3), 509-512. doi:10.1111/apa.13702

Boyle, M., Kent, S., Dassios, T., Chaudhary, R., O'Hare, S., & Broster, S. (2015, January). *High-flow nasal cannula on neonatal transfer – A year's experience*. Paper presented at Conference Transport of high-risk neonates, Genova, Italy. Retrieved from https://www.researchgate.net/publication/271212239_High-flow_nasal_cannula_on_neonatal_transfer_-_A_year%27s_experience

Roberts C. (2015). *Highflow on the Highway*. PSANZ breakfast session.

Roberts, C. T., Owen, L. S., Manley, B. J., Frøisland, D. H., Donath, S. M., Dalziel, K. M., ... & Davis, P. G. (2016). Nasal high-flow therapy for primary respiratory support in preterm infants. *New England Journal of Medicine*, 375(12), 1142-1151. doi:10.1056/NEJMoa1603694

Schlapbach, L. J., Schaefer, J., Brady, A. M., Mayfield, S., & Schibler, A. (2014). High-flow nasal cannula (HFNC) support in interhospital transport of critically ill children. *Intensive care medicine*, 40(4), 592-599. doi:10.1007/s00134-014-3226-7

Wilkinson, D., Andersen, C., O'Donnell, C. P., De Paoli, A. G., & Manley, B. J. (2016). High flow nasal cannula for respiratory support in preterm infants. *Cochrane Database of Systematic Reviews* 2, 1-93. doi:10.1002/14651858.CD006405.pub3