OXYGEN THERAPY AND THE COPD PATIENT

Sharon Hancock RN, MN
Clinical Nurse Specialist
Respiratory Services
MidCentral Health
DISCOVERY OF OXYGEN
The Pneumatic Institution
THE 19TH CENTURY
Early 20th Century
THE FIRST WORLD WAR
FIRST NASAL PRONGS 1920's
Oxygen tent 1930`s
THE SECOND WORLD WAR
Multicentre Trials of Long Term Oxygen Therapy

1980 The NOTT trial

1981 MRC Trial

Petty combined the results of both trials
TERMS USED

Hypoxaemia
- Diminished amount of O_2 in the arterial blood

Hypoxia
- Insufficient O_2 at tissue level

Anoxia
- No O_2 at tissue level

Hypercapnoea (hypercarbia)
- High CO_2 in the blood
Respiratory Failure

Type 1
- Hypoxaemia with a normal or low CO$_2$

Type 2
- Hypoxaemia with a high CO$_2$
SIDE EFFECTS OF OXYGEN THERAPY

• Retrolental fibroplasia
• Risk to COPD patient (hypercapnoea)
• Atelectasis
• Oxygen toxicity
• Hyperoxaemia associated with INCREASED mortality in survivors of cardiac arrest
• Oxygen therapy INCREASED mortality in non-hypoxic patients with mild-moderate stroke
THE OXYGEN-HAEMOGLOBIN DISSOCIATION CURVE
RATIONALE FOR PRESCRIBING OXYGEN THERAPY FOR COPD PATIENTS

- Hypoxaemia

- LTOT is prescribed to prevent secondary complications of the heart & other organs

- When administered to those clinically indicated, LTOT improves longevity and quality of life

Oxygen is not given for breathlessness
O2 for COPD Patient

- Provision of O2 in a patient who has or who is at risk of hypercapnoea may lead to increased CO2 levels and eventual apnoea

- However, failure to administer oxygen puts a patient at greater risk than does hypercapnoea

- Therefore when giving oxygen we need to assess and monitor acid base balance
NURSING CONSIDERATIONS

- Oxygen must be prescribed
 - Documentation:
 - Rate or %
 - Device
 - SpO$_2$ at rest on air
 - (10mins – for patient with diseased lung, 1 min for other)
 - If no O$_2$ in situ please document R/A (room air)
 - Nursing assessment
 - Care plan
CURRENT GUIDELINES FOR EMERGENCY OXYGEN THERAPY

British Thoracic Society (BTS) Guidelines

- Oxygen is only recommended for hypoxaemic patients

- Rationale for the target saturations is a combination of what is normal and what is safe

 - Most patients 94 - 98%

 - Risk of hypercapnic respiratory failure 88 – 92%*

*Or patient specific saturation on Alert Card
New Zealand Ministry of Health Specifications for Provision of LTOT

- Patient must be in a stable clinical state for at least 4 weeks
- Maximal medical treatment must be in place
- Evidence of no smoking for at least 4 weeks
- A PaO2 < 55mmHg on air performed on two occasions 2-3 weeks apart
- Palliation of terminally ill with disabling dyspnoea inadequately controlled on narcotics or anxiolytics with SpO2 < 90% on room air at rest
OXYGEN CONCENTRATORS
FUTURE DIRECTIONS

Further research;
LOTT trial
Effects on cognition/ brain function
Benefits during exercise
Health related quality of life
Nocturnal desaturation
Type of oxygen delivery
Other chronic lung diseases
Other comorbidities associated with COPD, phenotypes
IN SUMMARY

- Oxygen can be life a saving therapy for hypoxaemic patients
- LTOT can improve longevity for hypoxaemic patients with COPD
- Oxygen therapy can be harmful and so should be assessed and monitored before and during treatment
- Failure to administer oxygen puts a patient at greater risk than does hypercapnoea
- There is need for robust ongoing research regarding the appropriate use of oxygen for those with COPD and other chronic lung diseases.
Oxygen Bars