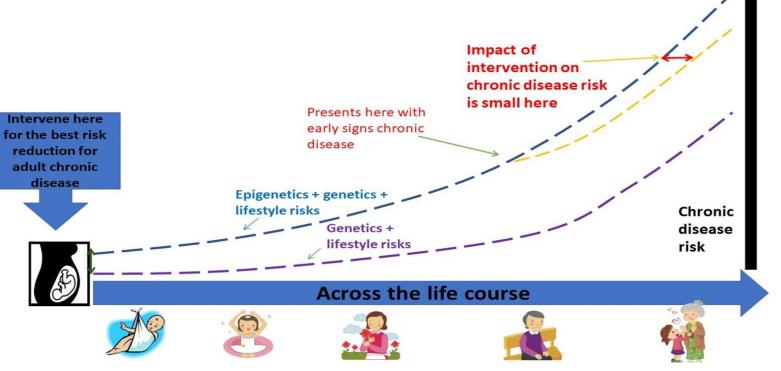


Optimising maternal nutrition

Investigating micronutrient deficiencies in women of childbearing age

Gael Mearns AUT



AUT Centre for Midwifery and Women's Health Research

Developmental origins of health and disease – DoHAD (World Health Organisation)

Adapted from Hanson, M., & Gluckman, P. (2011). Developmental origins of noncommunicable disease: population and public health implications. *The American Journal of Clinical Nutrition*, 94(suppl_6), 1754S-1758S. doi:10.3945/ajcn.110.001206

Vitamin B12 – recommended daily intake 2.4mcg/day

Natural food sources

≻Fish

Chicken

≻Meat

≻Eggs

≻Milk

➢Yoghurt

➤Cheese

Fortified sources

Soya, rice, almond milks

Vegetarian meat analogues

≻Marmite

✓ "Vegetarian" vegemite

➢Energy drinks

Meal replacements

Risks from Maternal B12 Deficiency

- Increased risk NTD (Molloy et al, 2009; Ray et al., 2007)
- Impaired cognition/neurological deficit (Bhate et al., 2008)
 - Maternal/neonatal macrocytic anaemia
- Low birthweight and preterm delivery (Muthayya et al., 2006)
 - Insulin resistance & low muscle mass in child...
 - ...& increased risk of diabetes in adult life (Yajnik et al., 2008)

Prevalence of B12 deficiency

- Internationally high rates of B12 deficiency South Asian populations
- Insufficient NZ research
 - NZNS 2008/9 –average of 20% of population low in B12 (Devi et al. 2018)
 - > 50% South Asian women low in B12 (Gammon et al., 2013)
- US study around 30 40% of older adults B12 insufficient/deficient (Andres, 2004)
 - 60 % of cases due to food-bound cobalamin malabsorption
 - 15-20% due to pernicious anaemia lack intrinsic factor
- US study -in younger adults –39% insufficient/deficient (Tucker et al., 2000)
 - more likely to be due to insufficient dietary intake, malabsorption or medications that inhibit B12 absorption (Tucker et al., 2000).

Prevalence increasing with more vegan/vegetarian/low-meat-eating diets

Contributors to B12 deficiency

Poor or incomplete absorption of B12 from food

- Food bound cobalamin absorption
- Pernicious anaemia- loss of intrinsic factor binding for B12 absorption
- GI inflammatory conditions- Crohn's, coeliac disease
- GI infections H.Pylori
- Inadequate dietary intake of B12
 - < RDI 2.4 mcg/day /2.6 mcg/day pregnancy
 - Low or non-meat eating dietary practices
- Medications that inhibit B12 absorption
 - e.g. Metformin, PPI

South Asian community perspectives on B12 deficiency - a qualitative descriptive study

South Asian community perspectives on B12 deficiency

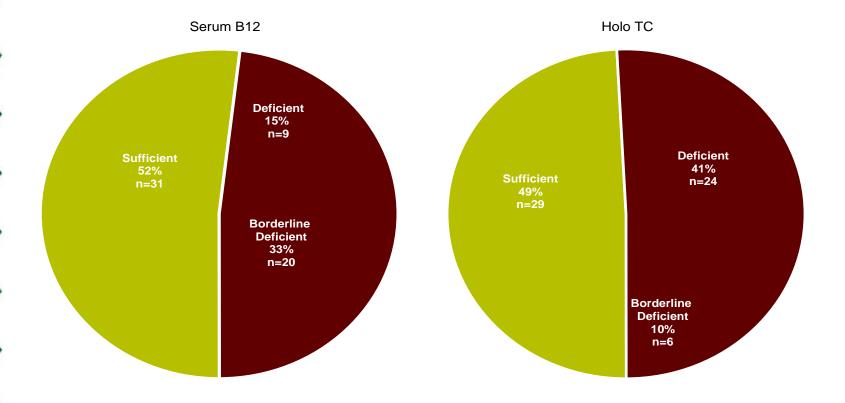
Six community focus groups

One health professional focus group

Key findings health professional focus groups

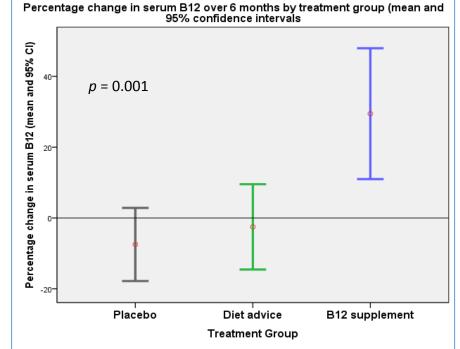
Key findings from South Asian Community

Pharmacological vs. physiological doses for B12 deficiency


- B12 deficiency due to malabsorption
 - Large pharmacological doses of B12 (high dose oral B12 or B12 injections 1000mcg x 3-5 doses)
 - Enterohepatic recycling of B12 affected -1-2% still absorbed by passive diffusion
 - Deficiency can become profound
- Low or non meat eaters at risk of B12 deficiency:
 - Absorb B12 well
 - Require only physiological oral dose supplement
 - ??What is an appropriate dose?
 - > Oral B12 supplements B12 not bound easily absorbed even in lack of gastric acid
 - Enterohepatic recycling of B12 intact
 - Deficiency not profound

VitB12 study

- 6-month trial 63 South Asian women
 - oral B12 supplementation 6 mcg
 - vs placebo
 - OR dietary advice
 - Tested at baseline, 6weeks, 3 months, 6 months
 - Registered clinical trial: ACTRN12610000262000


VitB12 study- approx. 50% of South Asian women B12 insufficient/deficient (Mearns et al., 2014)

Response in B12 biomarkers to study treatments over 6 months (Mearns et al.,2014)

% change in serum B12 over 6 months

Percentage change in serum B12 over 6 months by treatment group (mean and 95% confidence intervals % change in holo TC over 6 months

Conclusions of VitB12 RCT

- Low vitamin B12 status common in sample population
- 6 mcg B12 supplement capsule effective treatment for increasing B12 biomarkers
- Adherence with supplements decreased over time –reduced efficacy of oral supplement

relook at dose and frequency

 B12 dietary advice: insignificant effect on increasing B12 intake or serum B12

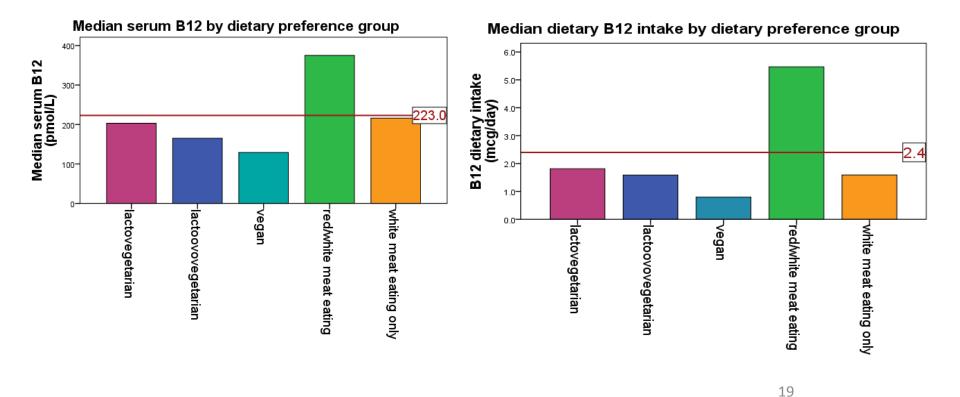
relook at effective ways to increase B12 intake via dietary advice/support

Vitamin B12 Food Frequency Questionnaire

Estimates vitamin B12 intake from dietary recall of foods consumed

Food frequency questionnaire (B12FFQ)

- 30 questions
- Included B12 containing food and beverages
- Recall of frequency and portion of foods eaten
- Approximated average B12 (mcg) consumed per day
- Compared with serum B12 and holoTC biomarkers

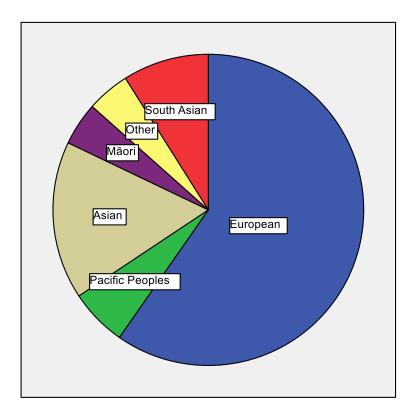

Vitamin B12 study Vitamin B12 Foods Questionnaire

GENERAL INSTRUCTIONS

- Answer each question as best you can. Estimate if you are not sure. A guess is better than leaving a blank.
- Put an X in the box next to your answer.
- If you make any changes, cross out the incorrect answer and put an X in the box next to the correct answer. Also draw a circle around the correct answer.
- If you mark NEVER, NO, or DON'T KNOW for a question, please follow any arrows or instructions that direct you to the next question.

Relationship between B12 dietary intake and serum B12 biomarkers

Summary of B12 FFQ findings (Mearns & Rush, 2017)


- B12 FFQ a valid measure of dietary B12 intake (r=0.55, p < 0.001, 95 % CI [0.34, 0.71])
- 44% of women had a dietary intake <RDI of 2.4 mcg B12/day
- Women who did not consume red meat were 2.2 and 2.8 times more likely to be B12 deficient or insufficient (p=0.005, 95% CI [1.4,5.9])

Nurses Nutrition Study

Micronutrient status and associations with dietary patterns

Ethnicity of study participants

67 female students age 18-45 years

- European n=40 (58%)
- Māori n=3 (4.3%)
- Pacific n=4 (5.8%)
- Asian n=11 (15.9%)
- South Asian n=6 (8.7%)
- Other n=3 (5.3%)

NNS: Micronutrient biomarker status (n=67)

	Median (25 ^{th/} 75th)	Range Lower/upper limit	n (%) low or deficient
Hb	135 (129/142)	104/166	5(7.5%)
Low<115 g/L			
MCV (f/L)	87 (85/90)	62/95	13(19.4%)
Low < 80 f/L			
Serum ferritin (ug/L)	24 (12/28)	2/300	29(43%)
Low <20 ug/L			
Serum vitamin B12 Low	320 (237/407)	99/794	13(19.4%)
<222pmol/L)			
Serum folate (nmol/L)	26 (11/36)	6/45	1(1.4%)
Low <7nmol/L			

Dietary practices

Reported dietary practices: Non meat-eating n=4(6%), white meat-eating only n=5(7.5%), red and white meat eating n=58 (86.5%)

Factor analysis of dietary patterns

Three dominant patterns in this group

- Discretionary/junk: deserts/sweets, snacks, takeaways, milk, pasta, starchy vegetables.
- Flexitarian: non starchy and starchy veges, fruit, nuts & seeds
- Fraditional: all meats, dairy, eggs, bread and crackers, fruit

Analysis of dietary intake/patterns

Significant associations

- Traditional pattern-meat eating/dairy &eggs/bread pattern
 - More likely to be ferritin replete in this pattern (r = 0.26, p=0.035)
- Discretionary/junk food patterns (r=-0.289, p=0.018)
 - More likely to be B12 deficient with this pattern

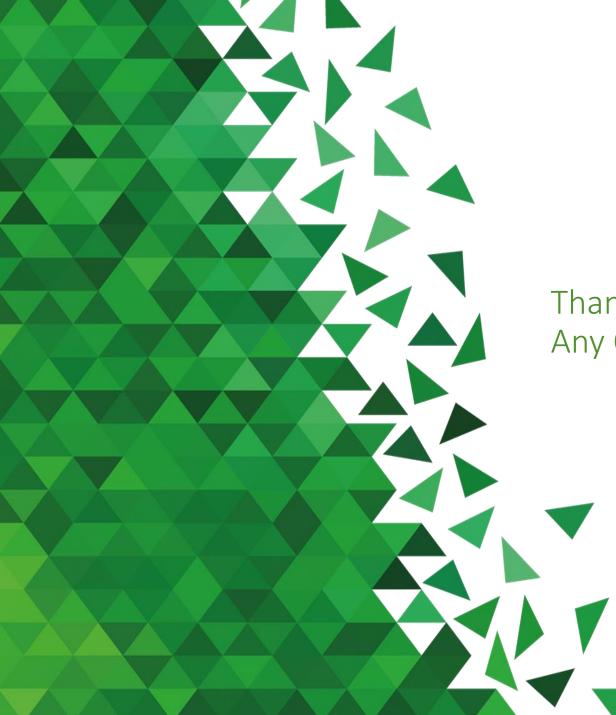
Regression and correlation analysis

- Only significant association
 - Serum B12 and servings of red meat/day (rho=0.38, p=0.003)
 - No association found between ethnicity and micronutrient deficiency
 - No association found between self-reported menstrual blood flow and ferritin

Challenges in screening for, preventing and managing B12 deficiency

- A more sensitive, specific and affordable test of B12 status needed
- Identifying and working with dietary 'at-risk' groups
- Treatment options appropriate for the cause of B12 deficiency

A more sensitive, specific and affordable test of B12 status needed for high risk


- Serum B12 low specificity and sensitivity –especially in pregnancy (Morbak, 2007)
- HoloTC reflects active B12 available for metabolism
 - Remains stable over pregnancy
- Testing for metabolites produced in B12 deficiency more accurate
 - Homocysteine and Methylmalonic acid (MMA)expensive and only tested in specialist laboratories
- Issues with transport of samples to specialist laboratories
 - MMA and Homocysteine

Future research – DBS-MMA testing

- Assistant Prof. Yvonne Lamers at the University of British Columbia (UBC) validated novel methods for testing DBS-MMA (Schroder et al., 2014)
- Convenient dried blood spot method (DBS) for sampling and tandem mass-spectrometry for testing.
- DBS-MMA measures methylmalonic acid (MMA), a metabolite specific to B12 deficiency.
- This DBS-MMA test has potential to aid more sensitive and reliable testing for B12 deficiency - complement the currently used serum B12 assay test
- Proposed AUT project includes evaluation of DBS-MMA testing; cost, convenience, and sensitivity.

Summary

- Low B12 status is common in women of child bearing age needs better recognition and prevention
- Align management of B12 deficiency with the contributors of deficiency
- Identify appropriate physiological oral B12 supplement dose
- More focus on dietary patterns for risk of deficiecny
- MoH dietary guidelines recommended food groups- discretionary/ junk eating patterns- increased risk of B12 deficiency.
- Better resources needed on sources of dietary B12 and when supplementation indicated
- More sensitive and specific tests needed to test for B12 deficiency
- PHARMAC funding of an oral B12 supplement

Thank you Any Questions?

References

- Andrès, E., Kurtz, J.-E., Perrin, A.-E., Maloisel, F., Demangeat, C., Goichot, B., & Schlienger, J.-L. (2001). Oral cobalamin therapy for the treatment of patients with food-cobalamin malabsorption. *The American journal of medicine*, 111(2), 126-129. doi:10.1016/s0002-9343(01)00792-6
- Bhate, V., Deshpande, S., Bhat, D. S., Joshi, N., Ladkat, R., Watve, S., ... Yajnik, C. (2008). Vitamin B12 status pregnant women and cognitive function in their 9 year old children. Food Nutrition Bulletin, 29(4), 249-254.
- Butler, C., Josep, V.-A., Rebecca, C.-J., Andrew, M., Kerenza, H., Alexandra, P., ... Andrew, G. (2006). Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency: a systematic review of randomized controlled trials. *Family Practice*, 23(3), 279.
- Devi, A., Rush, E., Harper, M., & Venn, B. (2018). Vitamin B12 Status of Various Ethnic Groups Living in New Zealand: An Analysis of the Adult Nutrition Survey 2008/2009. Nutrients, 10(2), 181.
- Graham, I. D., Logan, J., Harrison, M. B., Straus, S. E., Tetroe, J., Caswell, W., & Robinson, N. (2006). Lost in knowledge translation: time for a map? The Journal of continuing education in the health professions, 26(1), 13-24. doi:10.1002/chp.47
- Hanson, M., & Gluckman, P. (2011). Developmental origins of noncommunicable disease: population and public health implications. The American Journal of Clinical Nutrition, 94(suppl_6), 1754S-1758S. doi:10.3945/ajcn.110.001206
- McGirr, C., McEvoy, C., & Wayside, J.(2017). Vegetarian and vegan diets: weighing the claims. Nutrition Guide for Physicians and Related Healthcare Professionals, E-Pub Ahead of print_https://link.springer.com/chapter/10.1007/978-3-319-49929-1_20
- Mearns, G. J., Koziol-McLain, J., Obolonkin, V., & Rush, E. C. (2014). Preventing vitamin B12 deficiency in South Asian women of childbearing age: a randomised controlled trial comparing an oral vitamin B12 supplement with B12 dietary advice. *European Journal of Clinical Nutrition*. doi:10.1038/ejcn.2014.56
- Mearns, G. J., & Rush, E. C. (2016). Screening for Inadequate Dietary Vitamin B12 Intake in South Asian Women Using a Nutrient-Specific, Semi-Quantitative Food Frequency Questionnaire. Asia Pacific Journal of Clinical Nutrition.
- Molloy, A. M., Kirke, P. N., Troendle, J. F., Burke, H., Sutton, M., Brody, L. C., ... Mills, J. L. (2009). Maternal Vitamin B12 Status and Risk of Neural Tube Defects in a Population With High Neural Tube Defect Prevalence and No Folic Acid Fortification. *Pediatrics*, 123(3), 917-923. doi:10.1542/peds.2008-1173
- Morbak, A. L., Hvas, A.-M., Milman, N., & Nexo, E. (2007). Holotranscobalamin remains unchanged during pregnancy. Longitudinal changes of cobalamins and their binding proteins during pregnancy and postpartum. *Haematologica*, 92(12), 1711-1712. doi:10.3324/haematol.11636
- Nexo, E., & Hoffmann-Lücke, E. (2011). Holotranscobalamin, a marker of vitamin B-12 status: analytical aspects and clinical utility. The American Journal of Clinical Nutrition, 94(1), 359S-365S. doi:10.3945/ajcn.111.013458
- Ray, J. G., Wyatt, P. R., Thompson, M. D., Vermeulen, M. J., Meier, C., Wong, P. Y., ... Cole, D. E. (2007). Vitamin B12 and the risk of neural tube defects in a folicacid-fortified population. *Epidemiology*, 18(3), 362-366.
- Schroder TH, Quay TAW, Lamers Y. (2014. Methylmalonic Acid Quantified in Dried Blood Spots Provides a Precise, Valid, and Stable Measure of Functional Vitamin B-12 Status in Healthy Women. The Journal of Nutrition, 144(10):1658-1663
- Yajnik, C. S., Deshpande, S. S., Lubree, H. G., Naik, S. S., Bhat, D. S., Uradey, B. S., ... Yudkin, J. S. (2006). Vitamin B12 deficiency and hyperhomocysteinemia in rural and urban Indians. J Assoc Physicians India, 54, 775-782.
- University of Otago, New Zealand Ministry of Health. A Focus on Nutrition: Key Findings from the 2008/2009 New Zealand Adult Nutrition Survey. 2011; http://www.health.govt.nz/publication/focus-nutrition-key-findings-2008-09-nz-adult-nutrition-survey